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1. Introduction

Until recently, the AdS4/CFT3 correspondence was underdeveloped compared with its

cousin AdS5/CFT4 [1 – 3]. One of the main reasons for that was our lack of understanding

of CFT3 underlying M2 brane theories probing a Calabi-Yau four-fold. M2-brane theories

remained elusive compared with the theories of D3-branes, which can be studied by the

usual open string analysis. Even the simplest CFT3 theory corresponding to M2-branes

probing C
4 seemed to pose great difficulty. Since it has N = 8 supersymmetry and appar-

ently it was difficult to go beyond N = 3 supersymmetry in a (2+1)d field theory, the M2

theory was regarded as some unknown field theory yet to be constructed. Recently, the

status quo has changed drastically. One of the key observations was made by Schwarz [4].

He suggested that by introducing Chern-Simons terms and turning off the gauge kinetic

terms in a suitable limit, one can construct (2+1)d field theories with more than N = 3
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supersymmetry. One avatar of such idea, in retrospect, was constructed by Bagger and

Lambert [5 – 7] and independently by Gustavsson [8, 9]. At first sight, a key role was played

by 3-algebras, which do not have a usual field theory structure. Subsequently, it was shown

that the theory can be recast as an ordinary field theory [10]. Since then, we have rapidly

piled up various higher supersymmetric theories of Chern-Simons theories with N = 6, 5, 4

and 3 [12 – 20], increasing the number of understandable AdS4/CFT3 pairs. In particular,

the conjectured CFT3 dual of coincident M2-branes probing C
4 is the N = 6 CS theory

worked out by Aharony, Bergman, Jafferis and Maldacena (ABJM). Various checks of this

proposal have been performed, such as computing the moduli space, superconformal in-

dex [21] and higher order interactions due to instantons [22]. N = 4 theories for M2-branes

on (C2/Zn)2 and orientifolds thereof were constructed in [14].1

In the case of D3-branes, the AdS5/CFT4 correspondence has a very rich structure

of theories with N = 1 supersymmetry (i.e. four supercharges) [25 – 28]. The most com-

prehensive class of dual pairs has been achieved for D3-branes probing non-compact toric

Calabi-Yau 3-folds. Given this situation, one might wonder if similar structures have yet

to be discovered in AdS4/CFT3 with N = 2 supersymmetry (namely four supercharges).

Several authors have already initiated such study [29 – 32]. So far the field theory con-

structions have been restricted to those derived from (3+1)d theories, i.e. theories with the

same quiver diagrams and superpotentials as those of (3+1)d. This represents considerable

progress, but this set of theories is far from generic. One should go beyond this approach to

attack general N = 2 AdS4/CFT3. Here we initiate such study. In the current paper, we

construct several examples of the theories which cannot come from the (3+1)d quiver the-

ories. One famous example is the theory of M2-branes probing the cone over Q111, which

is expected to have a sextic superpotential. This theory is the (2+1)d analogue of the

theory of D3-branes probing the conifold worked out by Klebanov and Witten [33]. Using

the recently developed formalism of [30] and partly guided by crystal models [34 – 36], we

explicitly construct a (2+1)d theory whose moduli space is indeed C(Q111), where C(M)

denotes the cone over the manifold M .2 In addition, we work out several other theories

that cannot have a (3+1)d origin. Obviously, our constructions just touch the tip of an

iceberg and an extensive investigation of all related issues is beyond the scope of the current

paper. One feature worth mentioning, though, is that there can be more than one theory

with the same moduli space. This is reminiscent of Seiberg duality or toric duality [37, 38]

in (3+1)d.3 Apparently, there are far more possibilities in (2+1)d than in (3+1)d.

The paper is organized as follows. In section 2, we briefly summarize some aspects of

N = 2 Chern-Simons theories with matter and crystal models needed for later sections. In

section 3, we mention some features of (2+1)d theories derivable from (3+1)d and try to

characterize them. In section 4, we construct the theory whose moduli space is C(Q111).

In section 5, we construct the theory for C(dP3) × C and show that, upon addition of

1There are other N = 4 theories associated with C
2/Zn × C

2/Zm, with n 6= m, which involve auxiliary

fields [23]. See also [24].
2We will use this notation to denote both real and complex cones over certain manifolds. We are

confident the difference will be clear in each specific case.
3For the discussion of the Seiberg duality in (2+1)d, see [39].
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masses for adjoint fields, it is connected to that of C(Q111) by an RG-flow. This RG flow

is suggested by crystal models. In section 6.1, we construct another pair of models related

by a similar RG-flow, the theories for D3 and C
3/(Z2 ×Z2)×C. Interestingly, the theories

in section 6.1 are related to those in sections 4 and 5 by a simple flip in the charges of

some matter fields. In section 6.2, we propose the CS theories for C
3/(Zn ×Zn)×C. This

proposal is explicitly checked for n = 3 in appendix A. Section 7 discusses partial resolution

and how it connects the theories we have studied. We conclude in section 8. In appendix

B, we present some thoughts about parity invariance in these models.

2. Preliminaries

2.1 Moduli spaces of (2+1)d CS theories

The moduli space of the theories of our interest can be computed following [29, 30]. We now

summarize the procedure. A (2+1)d N = 2 Chern-Simons(CS) theory with bifundamental

and adjoint matter is given, in N = 2 superspace notation, by the following Lagrangian

Tr

(

−
∫

d4θ
∑

Xab

X†
abe

−VaXabe
Vb (2.1)

−i
∑

a

ka

∫ 1

0
dtVaD̄

α(etVaDαe−tVa) +

∫

d2θW (Xab) + c.c.

)

,

where Va are vector supermultiplets and Xab denote chiral supermultiplets transforming in

the fundamental representation of gauge group a and the anti-fundamental representation

of gauge group b. For a = b, this corresponds to adjoint matter for gauge group a. We

take
∑

ka = 0. This is a necessary condition for the moduli space to be four complex

dimensional. Recall that in 2+1 dimensions a vector superfield has the expansion

V = −2iθθ̄σ + 2θγµθ̄Aµ + · · · + θ2θ̄2D , (2.2)

where we omitted the fermionic part. Compared to 3+1 dimensions, there is a new scalar

field σ. We can write all terms contributing to the scalar potential in the Lagrangian

Tr

(

− 4
∑

a

kaσaDa +
∑

a

Daµa(X) (2.3)

−
∑

Xab

(σaXab − Xabσb)(σaXab − Xabσb)
† −

∑

Xab

|∂Xab
W |2

)

.

µa(X) is the moment map for the a-th gauge group

µa(X) =
∑

b

XabX
†
ab −

∑

c

X†
caXca + [Xaa,X

†
aa] , (2.4)

and gives the D-term. Here we use the same terminology of (3+1)d.
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By integrating out the auxiliary fields Da, we see that the bosonic potential is a sum

of squares. The vacua can be found by looking for vanishing of the scalar potential. This

gives rise to a set of matrix equations

∂Xab
W = 0

µa(X) = 4kaσa

σaXab − Xabσb = 0 (2.5)

The solutions to these equations automatically satisfy Da = 0 and correspond to super-

symmetric vacua. F-term constraints are exactly as in the (3+1)d case, while D-term

constraints are modified. The solution to only the F-terms is a useful object called the

master space [40].4

Let us analyze the abelian case first. We consider the branch of moduli space in which

all Xab are non-zero.5 The supersymmetric conditions set all σa equal to a given value σ.

The remaining equations

µa(X) = 4kaσ (2.6)

look like standard D-term equations with a set of effective FI terms ζa = 4kaσ. Since
∑

a ka = 0, one of these equations is redundant. Call G the number of gauge groups. We

are left with G − 1 equations. By taking integer linear combinations of the equations, we

can set G − 2 equations to the form

µ̃i(X) = 0 , i = 1, . . . G − 2 (2.7)

where the index i identifies G − 2 linear combinations of the gauge group, orthogonal to

the direction determined by the FI parameters ζa. These combinations are easily identified

as the kernel of the following matrix [45]

C =

(

1 1 . . . 1 1

k1 k2 . . . kG−1 kG

)

. (2.8)

We see that we are imposing the vanishing of the D-terms for G − 2 U(1) gauge groups.

As usual, combining D-term constraints with U(1) gauge transformations is equivalent

to modding out by the complexified gauge group. The equation for the remaining U(1)

gauge field looks like a D-term condition with a FI term. However, it does not add further

constraints: it simply determines the value of the auxiliary field σ. Analogously we do not

need to mod out by the remaining U(1) gauge group. As explained in detail in [11, 12],

the U(1) is coupled to the overall U(1) gauge field by the Chern-Simons coupling and

leaves a discrete symmetry Zk, where k = gcd({ka}). Note that since we are obtaining

the 4-complex dimensional moduli space by imposing G − 2 D-terms, the master space is

G + 2 dimensional.

4In this paper we are interested in theories that arise when M2-branes probe toric singularities. For

these theories, the moduli space (the space of solutions to to F and D-terms) is toric. The moduli space is

obtained from the master space by quotienting it by the U(1) actions associated with the D-term. Hence,

the master space is also a (generically higher dimensional) toric variety.
5See [29] for a discussion of other branches.
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X3

X4

Figure 1: Crystal of C4 adopted from [35].

The moduli space is interpreted as the transverse space to one M2-brane in M-theory

probing such geometry. In the cases of interest in this paper, this space is a non-compact

CY4-fold. In the non-abelian case, the moduli space is the symmetric product of N copies

of the abelian moduli space [30].

The computation of the moduli space closely resembles the (3+1)d case, with a simple

modification concerning D-terms. In practice, we will use the machinery of toric geometry.

We refer the reader to [37], to which notation we adhere, for a comprehensive review of its

application to this problem.

We close this section with a comment on two classes of models: those in which all

ki 6= 0 and those in which some ki = 0. For the first class, all vector multiplets become

massive and hence it is easier to think about their IR limit. On the other hand, we can also

argue that there is no objection to considering models in the second class. When computing

the moduli space, we quotient by the U(1) gauge group(s) with ki = 0. Hence, we only

consider variables that are invariant under these gauge group(s). We can think about the

corresponding gauge fields as auxiliary fields (Lagrange multipliers). For all the quivers in

this paper, we find CS levels in both classes that reproduce the desired geometries. Since

both of them seem to work at the level accessible at the moment, we list both possibilities.

2.2 Minimal review of crystal models

We now give a brief review of the M-theory crystal models [34 – 36]. Crystal models relate

a toric CY4 to a three-dimensional periodic graph (crystal). This crystal is conjectured to

encode information about the CFT3 on M2-branes probing the corresponding CY4.

The toric diagram forms a convex polyhedron in Z
3 ⊂ Z

4.6 The reduction from Z
4 to

Z
3 is a consequence of the CY condition. The crystal model follows from a T-duality of M-

theory. We take the T-duality transformation along a T 3 ⊂ T 4 aligned with the projection

Z
4 → Z

3. This corresponds to the x6,7,8 directions in table 1. By T-duality, we mean the

element t in the SL(2, Z)×SL(3, Z) duality group which acts as t : τ ≡ C(3)+i
√

gT 3 → −1/τ .

The stack of N M2-branes turns into a stack of N M5-branes wrapping the dual T 3. We call

6See [42 – 44] for more information on toric geometry
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0 1 2 3 4 5 6 7 8 9 11

M5 ◦ ◦ ◦ ◦ ◦ ◦
M5 ◦ ◦ ◦ Σ

Table 1: The brane configuration for M2 theories probing a toric CY4.

them the T -branes. The degenerating circle fibers turn into another M5-brane extended

along the (2+1)d world-volume and a non-trivial 3-manifold S in IR3 × T 3. We call it

the S-brane. Preservation of supersymmetry requires that the S-brane wrap a special

Lagrangian submanifold of IR3 × T 3 = (C∗)3, and that it is locally a plane in IR3 and a

1-cycle in T 3. The result is summarized in table 1.

The crystal graph is the intersection locus between the T -branes and the S-brane

projected onto the T 3. Figure 1, shows the crystal for C
4. We have 4 bonds and 2 vertices.

In crystal models each bond represents a N = 2 chiral field. As in dimer models, it is easy

to read off the superpotential from crystal models. Every vertex in the crystal contributes

a term in the superpotential, given by the product of all the fields meeting at a vertex, with

a positive sign for white vertices and a negative sign for black ones.7 In figure 1, we see

that we have four chiral fields and two superpotential terms. It is not clear how to read off

the gauge group from the crystal model compatible with the CS theories proposed so far,

though there has been partial success [36]. The proposal in [45] seems to be promising for

solving this problem. The ABJM model has four bifundamental chiral multiplets and the

superpotential is identified with that of the conifold (3+1)d theory [12]. This is in perfect

agreement with the structure suggested by figure 1. We will see later that there is another

possibility for assigning gauge groups to the above crystal.

An important concept is that of a perfect matching. It is a collection of bonds such

that every node in the crystal belongs to exactly one bond. In (3+1)d, it has been shown

that there is a one to one correspondence between perfect matchings in the dimer model

and GLSM fields describing the moduli space [48]. The same is true for the case of crystals,

since it is straightforward to show that perfect matchings are good variables for solving F-

term equations.8 While all the calculations in the coming sections can be performed without

any reference to perfect matchings, it is sometimes practical to use this correspondence.

In addition, crystal models seem to be very useful in clarifying such issues as RG-

flows, partial resolution and toric-duality in the (2+1)d setting. One can also use crystal

models to work out the meson spectrum of the corresponding CFT3, which is an important

check of AdS4/CFT3 correspondence. In what follows, we use the information on the

superpotential and RG-flow obtained from crystal models to guide the construction of

some (2+1)d theories.

7As we explain below, current understanding of crystal models does not allow for the identification of

gauge groups. Because of that, it is not clear how the gauge indices of chiral fields in superpotential terms

are contracted.
8Notice that this statement is not equivalent to saying that the correspondence between crystals and

CY4 singularities is established. Although there is a natural proposal, there is no proof of how perfect

matchings are positioned in a toric diagram.
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3. (2+1)d theories with and without (3+1)d parents

Recently, various authors discussed the possibility of generating (2+1)d CS theories with

toric CY4 moduli spaces by taking theories with the same quiver diagrams and superpoten-

tials of theories in (3+1)d [29 – 32]. We will refer to these models as theories with (3+1)d

parents. While this represents an interesting progress that allows the construction of an

infinite number of new models, it is not the generic situation and gives a reduced subset

of theories for M2-branes over toric CY4 manifolds. It is possible to give a very intuitive

characterization of all these theories. They are theories whose 3d toric diagrams can be

projected down to the 2d toric diagrams of the parent theories [45]. All known theories

with (3+1)d parents satisfy this property. When projected, an important role is played by

the multiplicity of GLSM fields [37, 38, 41], namely the multiplicity of every node in the

toric diagram has to match the one computed from a (3+1)d theory. It turns out that all

(2+1)d CS theories with toric moduli spaces that have been studied in the literature, even

before the aforementioned references, fall into this subclass of models with (3+1)d parents.

Figure 2 shows a sample collection of those models and their projections. Interestingly,

some models like (b) admit more than one projection.9 If projected down, it gives the toric

diagram of C(F0), a chiral Z2 orbifold of the conifold. If projected sideways, it gives the

toric diagram of a non-chiral Z2 orbifold of the conifold (also denoted the cone over L222).

In these cases, the coincidence of moduli spaces can be verified by direct computation.

Interestingly, both theories have the same moduli space but, naively, different amounts of

supersymmetry. While the first one seems to have N = 2, the second one has N = 4. It is

natural to expect that SUSY is enhanced in the first model. We will explore these issues

in future work.

Conversely, the projection prescription gives us a way to identify ‘pure’ (2+1)d theories,

namely those without (3+1)d parents. They are simply those whose toric diagrams cannot

be projected into 2d ones. A prototypical example is the cone over Q111. It is interesting

to work out some pure (2+1)d theories in order to understand their general structure and

why they do not allow (3+1)d parents. This is the subject of our next section.

4. Gauge theory for C(Q111)

We now construct the gauge theory for C(Q111). Along the years, there have been various

attempts to find this gauge theory, e.g. see [46] and [47] for two different proposals. These

theories have ordinary Maxwell kinetic terms for gauge fields instead of Chern-Simons

terms. The modern understanding, following [4], is that such theories cannot describe the

IR conformal fixed point. The reason for this is that an F 2 term has dimension 4, and

scale invariance in the classical theory only permits dimension 3 terms.10

Very much like the conifold in (3+1)d, C(Q111) is a great starting point due to its large

symmetry. We will extract from crystals as much information as possible, assuming their

9Note that Calabi-Yau manifolds which are products of cones with C have singular horizons.
10One might argue that it is possible to start from a Maxwell theory and flow to the IR until reaching

the fixed point. Such a description of the fixed point is unsatisfactory and of little utility, since the gauge

couplings run to infinity.
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4

32

2

2

2

2a) C
4 → C(T 11)

b) (C2/Z2)
2 → C(F0), C(L222)

c) C(T 11) × C → C
2/Z2 × C

d) C(M32) → C(dP0)

Figure 2: 3d toric diagrams and their projection to the 2d toric diagrams of the parents. (a) is the

well known ABJM theory. It projects down to the conifold, from which it borrows the quiver and

superpotential. How the 2d toric diagram is ‘inflated’ into a 3d one depends on the choice of CS

levels. The number appearing in the toric diagram denotes the multiplicity of the particular node.

The multiplicity is one unless otherwise stated. (b) admits two projections (indicated in green and

red) to toric diagrams coming from (3+1)d theories.

correctness. We will later see that they are indeed right, by performing various checks,

including the computation of the moduli space. From crystal model constructions [35, 36],

we know that C(Q111) has:

• 6 chiral fields.

• 2 non-vanishing superpotential terms of order 6.

Since the theory has two terms in the superpotential, there are no restrictions on the

abelian moduli space coming from F -terms. In other words, the superpotential vanishes

in the abelian case and the master space is C
6. Then, we must have 2 constraints from

D-terms, i.e., G − 2 = 2 (with G the number of gauge groups), thus we also know the

theory has 4 gauge groups. Finally, it is given by an SU(2)3/U(1)2 coset, which has

SU(2)3 ×U(1)R global symmetry. This structure appears clearly in our construction. The

presence of 6 chiral fields is not surprising, since this is the minimal matter content we

can think of in a theory with SU(2)3 symmetry. One can try to construct a theory that

meets all the requirements above. The constraints are so strong that the answer is basically

unique.11 Figure 3 shows the proposed quiver diagram. We will then subject this theory

to various tests.

11It is important to notice that there might exist dual descriptions of this theory, with different quivers,
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4

3

C2

A2

C1

A1

B1,B21 2

Figure 3: Quiver diagram for Q111.

The superpotential is given by

W = C1A1B1C2A2B2 − C1A1B2C2A2B1 . (4.1)

In this and coming expressions, color indices are contracted between adjacent fields and

a trace is implicit. The theory has an explicit SU(2) global symmetry under which B1

and B2 form a doublet, as well as a U(1)R symmetry. A useful intermediate step in the

computation of the mesonic moduli space is the master space.12 A small clarification is

in order here. In 4d, mesons correspond to closed oriented paths in the quiver. In this

paper, we use the term mesons to indicate operators (that do not involve epsilon tensor

contractions) that are invariant under the G−2 gauge groups transverse to (2.8). This is the

natural generalization of mesons to the theories under study. Obviously, not all mesons

defined this way are given by closed paths in the quiver. To find the mesonic moduli

space, we look for solutions of F-term equations without imposing gauge invariance. As

in any (toric) theory with two superpotential terms, we obtain QF = 0 and the GLSM

fields (equivalently perfect matchings) are identified with the chiral fields. Let us call

(p1, p2, p3, p4, p5, p6) = (A1, A2, B1, B2, C1, C2). The master space is hence C
6. We can

construct the matrix of charges for GLSM fields (which in this case are equivalent to the

chiral fields). The charges can be read from the quiver and are given by

A1 A2 B1 B2 C1 C2

Q1 1 0 0 0 -1 0

Q2 0 1 0 0 0 -1

Q3 -1 -1 1 1 0 0

Q4 0 0 -1 -1 1 1

Different choices of the CS coefficients give interesting theories. We are interested in

breaking the symmetry of the master space down to global symmetry of Q111, i.e. SU(2)3×
U(1). There are only two choices that lead to this symmetry at the level of the charge

which share the same moduli space.
12For short, we refer to the mesonic moduli space as just the moduli space in what follows.
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Figure 4: Toric diagram for the k = (1, 1,−1,−1) theory.

matrix. They are (k,−k, 0, 0) and (k, k,−k,−k). Since we do not want a further Zk

orbifold, we take k = 1. Let us first consider k = (1,−1, 0, 0). In this case, the two U(1)’s

by which we quotient can be taken to be Q3 and Q4. This gives rise to

QD(1,−1,0,0) =

(

−1 −1 1 1 0 0

0 0 −1 −1 1 1

)

(4.2)

We clearly see that this charge matrix breaks the global symmetry of the master space

from U(6) down to SU(2)3 × U(1), as desired. The pairs (A1, A2), (B1, B2) and (C1, C2)

transform as doublets of each of the SU(2) factors. The toric diagram is given by the kernel

of this matrix and is equal to

GT
(1,−1,0,0) =











1 0 1 0 0 1

1 0 1 0 1 0

0 0 −1 1 0 0

−1 1 0 0 0 0











(4.3)

All columns add up to 1, as usual. We can drop, for example, the fourth row and plot the

toric diagram. The result is shown figure 4 and is precisely the one for C(Q111).

We now repeat the analysis for k = (1, 1,−1,−1). In this case, we quotient by Q1 +Q3

and Q1 + Q4, which gives

QD(1,1,−1,−1) =

(

0 −1 1 1 −1 0

1 0 −1 −1 0 1

)

(4.4)

Once again, the SU(2)3 × U(1) symmetry is clear from this matrix. The doublets are now

different from the previous case, and are given by (A1, C2), (A2, C1) and (B1, B2). Taking

the kernel we obtain

GT
(1,1,−1,−1) =











−1 0 0 0 0 1

0 −1 0 0 1 0

1 1 0 1 0 0

1 1 0 0 0 0











(4.5)

It is straightforward to see that it also corresponds to the toric diagram in figure 4.
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Figure 5: Quiver diagram for C(dP3) × C.

Let us provide some argument of why this theory does not come from a (3+1)d parent.

Recall that by not having a (3+1)d parent we actually mean that it does not exist a

CFT which is derived from D3-branes on a CY3 singularity with the same quiver and

superpotential interactions. To the best of our knowledge, out of the vast (actually infinite)

catalogue of known AdS5/CFT4 pairs, there is no single example of quivers containing nodes

with a single incoming and a single outgoing arrow (such as figure 3). The reason for this is

that such nodes correspond to Nf = Nc gauge groups which generate dynamical scales, not

leading to a CFT. More generally, one could think about more naive ways in which these

theories could fail to be consistent 4d quantum field theories (we are not concerned about

conformal invariance in this argument), such as the existence of anomalies. Interestingly,

all the quivers considered in this paper would be free of gauge anomalies if considered as

4d theories. It would be interesting to understand whether this is a general behavior with

a deeper explanation.

5. A Klebanov-Witten RG flow

Using crystals, the authors of [36] have proposed some Klebanov-Witten type RG flows [33]

connecting theories, which result from adding adjoint masses. The adjoint masses come

from twisting bonds in the crystal. In particular, it is suggested there should exist such a

flow between C(dP3)×C and C(Q111). We now investigate this flow and use it to determine

the gauge theory for C(dP3)×C. We go a step beyond [36] and propose the quiver for this

model, which is shown in (5). It is obtained by undoing the RG flow that we now explain.

The superpotential is13

W = φ1(B1C1A1 − B2C2A2) − φ2(C1A1B1 − C2A2B2) . (5.1)

The RG flow is triggered by the following mass term

∆W = −(φ2
1 − φ2

2). (5.2)

13Contrary to [36] where the superpotential is known in the abelian limit, we know the gauge indices of

all fields. We sort the fields in the superpotential accordingly.
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It is straightforward to verify that, by integrating out the massive fields φ1 and φ2, we

recover (4.1) up to an unimportant overall multiplicative constant. This is indeed very

encouraging. Let us now check that the theory with quiver diagram in figure 5 and super-

potential (5.1) has C(dP3)×C as its moduli space for some choice of CS levels. As before,

it is a straightforward exercise to write down the matrix translating quiver fields to GLSM

fields. It is given by

P =

































p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

A1 1 1 1 0 0 0 0 0 0 0

A2 1 0 0 1 0 0 1 0 0 0

B1 0 0 0 1 1 1 0 0 0 0

B2 0 1 0 0 1 0 0 1 0 0

C1 0 0 0 0 0 0 1 1 1 0

C2 0 0 1 0 0 1 0 0 1 0

φ1 0 0 0 0 0 0 0 0 0 1

φ2 0 0 0 0 0 0 0 0 0 1

































(5.3)

This determines the charge matrix QF = Ker(P ) encoding the F-term equations.

QF =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0 −1 0 0 0 −1 0 1 0

1 −1 0 0 0 0 −1 1 0 0

1 0 −1 −1 0 1 0 0 0 0

1 −1 0 −1 1 0 0 0 0 0















(5.4)

From (5.3), we can determine how GLSM fields are charged under the four quiver U(1)’s.

This is given by

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Q1 1 0 0 0 0 0 −1 0 0 0

Q2 0 0 0 0 0 0 1 0 −1 0

Q3 −1 0 0 0 1 0 0 0 0 0

Q4 0 0 0 0 −1 0 0 0 1 0

Since the CS levels are not affected by the RG flow, once again we are interested in looking

at the theory with k = (1, 1,−1,−1). This tells us that we can impose the D-terms for

Q1 + Q3 and Q1 + Q4.

QD =







p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 0 0 1 0 −1 0 0 0

1 0 0 0 −1 0 −1 0 1 0






(5.5)

The total charge matrix is obtained from concatenating (5.4) and (5.5). The toric diagram
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Figure 6: Toric diagram for the k = (1, 1,−1,−1) theory.

is again given by

GT = Ker(Qtot) =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 0 0 0 0 0 0 0 0 1

−1 −1 0 0 0 1 0 0 1 0

0 1 0 −1 0 −1 0 1 0 0

2 1 1 2 1 1 1 0 0 0















(5.6)

The result is represented in figure 6, where we use the first three rows of the previous

matrix. This is indeed the toric diagram for C(dP3) × C.

The multiplicity of GLSM fields in figure 6 does not project down to any of the toric

diagrams that arise from dP3 quivers [41]. We also know this is the case because, otherwise,

the gauge theory would have six gauge groups and a completely different quiver. Like

C(Q111) this is a pure (2+1)d theory.

6. More examples

6.1 Another pair of theories connected by an RG flow

We now present a similar pair of theories connected by an RG flow, also anticipated in [35].

The two theories correspond to D3
14 and C

3/(Z2 × Z2) × C. Crystal model suggest that

the superpotential of the theories corresponding to C
3/(Z2 ×Z2)×C are the same as those

of C(dP3)×C in the abelian limit (namely when fields are no longer matrices and ordering

becomes unimportant), i.e., nodes in both crystals combine the same fields. This hints

that the matter contents are related by suitable flips of the charges. We expect D3 and

C(Q111) to be connected in a similar way.

Let us first consider D3. Its quiver is shown in figure 7. It is obtained from the C(Q111)

quiver by flipping half of the arrows. The superpotential is

W = C1A1B1B2A2C2 − B1C1A1A2C2B2 . (6.1)

14Here we adopt the name devised at [36] where D3 is simply the name of the noncompact CY4-fold given

by the toric diagram figure 8.
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Figure 7: Quiver diagram for D3.

This superpotential follows form crystal models and, as we explained, can be obtained

from the superpotential of C(Q111) by changing the order of fields according to the charge

assignments.

Since we have only two superpotential terms, QF = 0, as for Q111, and GLSM fields

are identified with chiral fields. The quiver U(1) charges are given by

A1 C1 A2 C2 B1 B2

Q1 1 -1 0 0 0 0

Q2 0 0 -1 1 0 0

Q3 -1 0 1 0 1 -1

Q4 0 1 0 -1 -1 1

As for Q111, there are two choices of CS levels that produce the desired moduli space:

k = (1, 1,−1,−1) and k = (1,−1, 0, 0). We analyze k = (1, 1,−1,−1), the other option is

analogous. We quotient by Q1 + Q3 and Q1 + Q4, given by the matrix

QD =

(

0 −1 1 0 1 −1

1 0 0 −1 −1 1

)

(6.2)

In this case, Qtot = QD. Its kernel determines the toric diagram matrix

GT =











−1 −1 0 0 0 1

1 1 0 0 1 0

1 0 0 1 0 0

0 1 1 0 0 0











(6.3)

This matrix corresponds to the toric diagram for D3. Figure 8 plots its last three rows.

In passing, we note that it is easy to identify another theory whose moduli space is D3.

It arises from the (3+1)d parent theory of the cone over the Suspended Pinch Point(SPP),

whose toric diagram can be obtained from that of D3 by a suitable projection. In this case,

the gauge theory has only three gauge groups [49] and the CS couplings are k = (1,−1, 0),

with zero in one of the gauge groups without the adjoint [45]. This example shows a
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Figure 8: Toric diagram for the k = (1, 1,−1,−1) theory.

B2
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21

3
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Φ2

Figure 9: Quiver diagram for C3/(Z2 × Z2) × C.

behavior that we expect to be generic, the same moduli space arises from theories with

and without (3+1)d parents. Furthermore, these theories can have a different number of

gauge groups.

We now propose a theory for C
3/(Z2 × Z2) × C. We obtain its quiver from the one

of C(dP3) × C, shown in figure 5, by flipping the direction of A2, B2 and C2. The quiver

diagram is shown in figure 9.

The superpotential is

W = φ1(B1C1A1 − A2C2B2) + φ2(B2A2C2 − C1A1B1) (6.4)

As explained before, the superpotential of C
3/(Z2 × Z2)× C is the same as C(dP3)×C in

the abelian case. Because of this, the P and QF matrices as are the same of C(dP3) × C,

(5.3) and (5.4). The quiver U(1) charges correspond to

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Q1 0 0 1 1 0 -1 -1 0 0 0

Q2 0 -1 1 0 0 0 -1 1 0 0

Q3 0 -1 0 1 0 0 0 0 0 0

Q4 0 0 0 0 0 -1 0 1 0 0

Let us consider k = (1, 1,−1,−1) (once again, k = (1,−1, 0, 0) gives the same moduli

– 15 –



J
H
E
P
1
2
(
2
0
0
8
)
1
1
0

2
2

2

Figure 10: Toric diagram for the k = (1, 1,−1,−1) theory.

space). We then consider Q1 + Q3 and Q1 + Q4, which give

QD =







p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

0 -1 1 2 0 -1 -1 0 0 0

0 0 1 1 0 -2 -1 1 0 0






(6.5)

Combining QF and QD and finding its kernel, we get

GT = Ker(Qtot) =















p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0 1 0 -1 0 1 0 1 0

0 0 -1 1 1 0 1 1 0 0

0 1 1 0 1 1 -1 0 0 0

0 0 0 0 0 0 0 0 0 1















. (6.6)

Removing, for example, the first row gives the toric diagram of C
3/(Z2 ×Z2)×C as shown

in figure 10.

There is a further check we can perform on the two theories we have just introduced.

In [36], it is suggested that there exists an Klebanov-Witten type RG-flow connecting

C
3/(Z2×Z2)×C and D3 theories. Indeed, it is easy to check that adding (φ2

2−φ2
1) to (6.4)

and integrating out the massive fields, we obtain (6.1).

6.2 C
3/(ZN × ZN ) × C orbifold

We can extend our results for C
3/(Z2×Z2)×C and give a proposal for a general C

3/(ZN ×
ZN ) × C orbifold. The orbifold group has two generators g1 and g2, that act on the four

complex coordinates x, y, z and w of C
4 according to

g1 : (x, y, z) → (ω x, ω−1 y, z) (6.7)

g2 : (x, y, z) → (ω x, y, ω−1 z)

with ω = e
2πi
N , leaving w untouched. The theory contains 2N gauge groups and 4N matter

fields given by
Xi ( 2(i−1), 2i−1)

Yi ( 2i−1, 2i)

Zi ( 2i, 2(i−1))

φi Adj2i

(6.8)
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with i = 1, . . . , N and nodes in the quiver identified by mod (2N). The superpotential is

W =

N
∑

i=1

φi(Xi+1Yi+1Zi+1 − ZiXiYi) . (6.9)

From this superpotential, we can use Kasteleyn matrix techniques to determine that the

number of GLSM fields is 3N +1.15 Because of this, it is computationally difficult to verify

this proposal for large N . In Appendix A, we confirm it explicitly for N = 3. The notation

in the previous section for C
3/(Z2 ×Z2)×C translates into the general notation as follows:

(A1, A2, B1, B2, C1, C2) → (Y1,X1, Z1, Z2, Y2,X2) and nodes are relabeled according to

(1, 2, 3, 4) → (1, 3, 2, 4).

It is interesting to consider the N = 1 case, since it provides an alternative to ABJM

for M2-branes on C
4. The model has a U(N1) × U(N2) gauge group with X transforming

as (N2, N̄1), Y as (N1, N̄2) and two adjoints φ1 and Z = φ2 of U(N2). The superpotential

is given by

W = φ1 X Y φ2 − φ2 X Y φ1 . (6.10)

The moduli space is C
4 for CS levels (1,−1). See [45] for the same theory, but derived by

other methods. It would be interesting to understand how supersymmetry is enhanced in

this model.

7. Partial resolution

7.1 Partial resolution in CS theories

Different geometries and their dual gauge theories can be connected by partial resolution.

Partial resolution works in this case very similarly to (3+1)d, with a few new features that

we now discuss.

We can turn on FI parameters for any of the gauge groups, with the consequent

modification of the D-term equations. The G − 2 ones that originally vanish are of most

importance. As a result of the FI terms, some chiral fields in the quiver (equivalently the

corresponding GLSM fields) acquire vevs. These vevs higgs the theory at low energies and

can also give mass to some of the chiral fields, which have to be integrated out.

It is interesting to notice that for the specific case of manifolds of the form CY3 × C,

the number of possible partial resolutions is smaller than for CY3. The reason for this is

twofold. The CY3 × C theory has generally less gauge groups than the CY3 counterpart16

and only G − 2 independent FI terms result in resolutions.

We also need to take care of the CS couplings. As we now show, whenever two gauge

groups are higgsed to the diagonal subgroup by a bifundamental vev, the resulting CS

coupling is the sum of the original ones. Suppose some field with charges (−1, 1) under

15It is interesting to compare this number with the 2N + 1 GLSM fields of C
2/ZN × C orbifolds [41].

16A simple example that falls into this category but does not satisfy this rule is C
4 = C

3 ×C. The ABJM

theory (the theory for C
4) has one gauge group more than N = 4 SYM in (3+1)d (the theory for C

3).
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gauge groups A1 and A2, whose CS couplings are k1 and k2, acquires a vev. For its scalar

component, the covariant derivative is

DµΦ = ∂µΦ − i(A1
µ −A2

µ)Φ . (7.1)

The combination A−
µ = A1

µ −A2
µ becomes massive. We call m its mass. The relevant piece

of the action is

S =

∫

d3x k1ǫ
µνρA1

µ∂νA1
ρ + k2ǫ

µνρA2
µ∂νA2

ρ − m2(A1
µ −A2

µ)2 + · · · . (7.2)

Defining A± = A1 ±A2 and k± = k1 ± k2, we get

S =

∫

d3x k+ǫµνρA+
µ ∂νA+

ρ + k+ǫµνρA−
µ ∂νA−

ρ + 2k−ǫµνρA−
µ ∂νA+

ρ −m2(A−
µ )2 + · · · . (7.3)

At energies well below m, we can proceed to integrate out A−. The equation of motion

reads

k−ǫµνρ∂νA+
ρ + k+ǫµνρ∂νA−

ρ = m2A−
µ . (7.4)

At energies well below m, we can consider A− is constant. Then, the previous expression

reduces to

k−ǫµνρ∂νA+
ρ ∼ m2A−

µ (7.5)

and

S ∼
∫

d3x k+ǫµνρA+
µ ∂νA+

ρ + 2k−ǫµνρA−
µ ∂νA+

ρ − m2(A−
µ )2 + · · · . (7.6)

Plugging the approximate solution to the equation of motion we get

S =

∫

d3x k+ǫµνρA+
µ ∂νA+

ρ − k2
−

2m2
F+

µνF+
µν · · · . (7.7)

As anticipated, we get a CS coupling for the surviving gauge field whose CS level is the

sum of the Higgsed CS levels. In addition, there is a Maxwell term that vanishes in the IR

limit (equivalently in the m → ∞ limit).

7.2 Connections between models

We now investigate the web of connections that result from partial resolutions between

the theories we have studied. With this goal in mind, the list of partial resolutions we

considered is certainly not exhaustive.

By now, we expect the reader to be familiar with the kind of matrices that arise

when analyzing these models from a toric geometry perspective. Hence, for the brevity

of the presentation, we just state the quiver vevs that are turned on (working out the

corresponding vevs for GLSM fields is straightforward) and the results.

C
3/(Z3 ×Z3)×C is resolved down to C

3/(Z2 ×Z2)×C by turning on vevs for X1 and

Z1. The CS levels match the ones we have studied. C
3/(Z2 × Z2) × C can be resolved to

C(T 11)×C by vevs of A1 and A2. The quiver diagram is shown in figure 11.a, k = (1,−1)

and the superpotential is

W = φ1(B1C1 − C2B2) + φ2(B2C2 − C1B1) . (7.8)
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Figure 11: Quiver and toric diagram for C(T 11) × C.

Φ1 B2Φ2

2
21 C2C1 3

A1 A2

(b)(a)

Figure 12: Quiver and toric diagram for C(SPP ) × C.

This theory has been recently discussed in [30]. On the other hand, turning on a

vev for B1 resolves C
3/(Z2 × Z2) × C down to C(SPP ) × C. This is a new gauge theory

without a (3+1)d parent.17 Its quiver diagram is shown in figure 12.a, k = (1,−2, 1) and

its superpotential is given by

W = φ1(C1A1 − A2C2B2) + φ2(B2A2C2 − C1A1) . (7.9)

This is in agreement with the crystal proposal [36]. Computing its moduli space, we

obtain the toric diagram in figure 12.b.

C(dP3) × C has a very similar pair of resolutions to the same theories. Vevs for A1

and A2 take us to C(T 11) × C, and a vev for B1 takes us to C(SPP ) × C.

In summary, we have been able to connect all the theories we have discussed in

this paper by either partial resolutions or mass deformations. Figure 13 summarizes the

“roadmap” of connections between the models.

8. Conclusions

In this paper we have constructed various examples of (2+1)d N = 2 CS gauge theories that

do not have a (3+1)d origin. One of them is the gauge theory for C(Q111). We have also

considered KW-type RG-flows connecting different theories as well as partial resolutions.

17Turning on a vev for A1 leads to a theory in which one of the gauge groups has vanishing CS level.

Similarly to what happens for some examples in previous sections, formal computation of the moduli space

also leads to C(SPP ) × C.
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3/(Z3 × Z3) × C C
3/(Z2 × Z2) × C
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C(SPP ) × C

C(Q111) × C

D3

C(dP3) × C

Figure 13: Connections between the theories we have studied. PR indicates partial resolution and

“mass” corresponds to RG flows following mass deformations.

It turns out that the chiral field content, superpotentials, RG-flows and partial resolutions

are in agreement with crystal models. It is important to emphasize, though, that all

our computations, most notably the calculation of moduli spaces, are independent of the

validity of crystal models. Thus, our results can be regarded as new evidence that crystal

models indeed capture the structure of these theories.

An ambitious goal would be to obtain an efficient procedure for constructing the (2+1)d

CS gauge theory for an arbitrary toric CY4-fold, analogous to the one provided by dimer

models in (3+1)d. To do this, it is still necessary to understand crystal models in more

detail, in particular how they encode gauge groups. The helical path idea of [45] seems

to be a promising direction. A robust proof of the correspondence between crystal models

and CY4/CFT3 is desirable. It is conceivable that the correspondence can be proved both

with string theory methods like [50] or purely in field theoretic terms as in [48].

The next step would be to determine all gauge theories whose moduli space is a given

geometry. Then, we can investigate whether these models are related by some kind of

duality. An interesting Seiberg duality for CS theories has been recently introduced in [51].

The full set of dualities might be larger than this since, in general, we expect dual models

can have different number of gauge groups. We have briefly mentioned this possibility

in section 6.1, for the case of D3. Interestingly, (2+1)d mirror symmetry is rich in such

examples [52]. The D3 models are also examples of theories with and without (3+1)d

parents having the same moduli space. A similar pair is the ABJM model and the N = 1

case of the models in section 6.2.

Understanding how geometry translates into field theory is the first step towards a

general understanding of AdS4/CFT3 in N = 2 settings. In addition, we would like to

perform various checks on the dual pairs. One such test, is the precision matching of R-

charges computed from field theory and geometry as done in (3+1)d [25]. At this moment,

it is not clear how to implement such program. While the computation can be done on the

geometric side using the techniques in [43], it is still not known how to use the field theory

ideas of [53] in this context. Another possibility is to work out the BPS operators on both

sides of the correspondence, along the lines of [54]. This program has been already initiated
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Figure 14: Quiver diagram for C3/(Z3 × Z3) × C.

in the context of M2-branes in [56, 30, 45]. We believe that plenty of new structures are

still waiting to be discovered and we hope to report our progress in the near future.
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A. C3/(Z3 × Z3) × C

In this appendix, we investigate the general proposal of the section 6.2 for the case of N = 3

The quiver diagram is shown in figure 14. The superpotential is

W = φ1(X2Y2Z2 − Z1X1Y1) + φ2(X3Y3Z3 − Z2X2Y2) + φ3(X1Y1Z1 − Z3X3Y3) . (A.1)

From this superpotential, we can construct the following Kasteleyn matrix. Rows and

columns correspond to negative and positive superpotential terms, respectively

K =







φ1 0 X1 + Y1 + Z1

X2 + Y2 + Z2 φ2 0

0 X3 + Y3 + Z3 φ3






(A.2)

The GLSM fields (perfect matchings of the crystal) can be computed as det K. Notice

that although we are using technology that is borrowed from the study of dimer models,

the reasoning above is independent of any dimer model interpretation and applies to any
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theory in which the superpotential satisfies the toric condition (i.e. that every field appears

in exactly two terms, with opposite signs). They are 28, and their relation to quiver fields

is encoded in the following matrix

P =























p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

X1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0

X2 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0

X3 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Z1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0

Z2 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

Z3 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

Y1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 0

Y2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0

Y3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

φ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

φ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

φ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1























.

(A.3)

QF is the 20 × 28 dimensional matrix obtained as Ker(P ). We do not exhibit here for

space reasons. The quiver U(1) charges can be reproduced by the following charge matrix

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

Q1 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q2 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q3 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Q4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

Q5 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Q6 1 1 -1 0 0 0 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 0 0 0 0

Following the general proposal, we take CS levels k = (1,−1, 1,−1, 1,−1). We then quo-

tient by Q1 + Q2, Q1 + Q4, Q1 + Q6 and Q2 + Q3. Then, we have

QD =





p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

−1 1 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 0 0 1 0 0 0 −1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0





(A.4)

We combine QF and QD into Qtot and calculate the toric diagram of the moduli space as

GT = Ker(Qtot). The result is

GT =





p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−2 −2 −2 −2 −2 −2 −2 −2 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1 0 0 0 0 1 0

0 1 1 2 1 2 2 3 0 1 1 2 0 1 1 2 0 1 0 1 1 2 0 1 0 1 0 0

3 2 2 1 2 1 1 0 2 1 1 0 2 1 1 0 1 0 2 1 1 0 1 0 1 0 0 0





(A.5)

In figure 15 we plot the first three rows of this matrix. This corresponds precisely to the

toric diagram of C
3/(Z3 × Z3) × C and has a nice structure of multiplicities.

B. Parity invariance

Parity invariance is a key property expected to be satisfied by M2-brane theories. In this

appendix we present some evidence that our models preserve parity invariance. More con-

cretely, we show that when we expand the action around a point in moduli space at which

gauge groups with opposite CS levels are higgsed to the diagonal subgroup, parity invari-

ance is preserved up to irrelevant terms (for some assumption about the superpotential).

Our method is similar to the one used in [55] to derive the action of D2-branes from that

of M2-branes.
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Figure 15: Toric diagram for the k = (1,−1, 1,−1, 1,−1) theory.

1
Φ

2

X12

X21

Figure 16: A toy model we use to investigate our ideas about parity invariance.

In order to illustrate our strategy, let us consider the toy model shown in figure 16.

The gauge group is U(N1) × U(N2) and we have two bifundamentals X12, X21 and one

adjoint Φ for the second group. This theory contains various structures that are present

in general models.

The action is given by

S =
1

2

∫

d3x(−DµX12D
µX†

12 − DµX21D
µX†

21 − DµΦDµΦ)

+
k

2

∫

d3xǫµνλ

(

A1
µ∂νA1

λ +
2i

3
A1

µA1
νA1

λ −A2
µ∂νA2

λ − 2i

3
A2

µA2
νA2

λ

)

+ . . . (B.1)

where the covariant derivatives are

DµX12 = ∂µX1 + i(A1
µX12 − X12A2

µ)

DµX21 = ∂µX2 + i(A2
µX21 − X21A1

µ)

DµΦ = ∂µΦ + i[A2
µ,Φ] (B.2)

with Φ being Hermitian. We do not write the scalar potential explicitly, but we can assume

that the potential is invariant under the parity operation, which we will define later. We

leave traces implicit in all our expressions. Next, let us define the combinations

2A± = A1 ±A2 . (B.3)

The CS term can be rewritten as follows

ǫµνλ(A1
µ∂νA1

λ −A2
µ∂νA2

λ) = 4ǫµνλA−
µ ∂νA+

λ

ǫµνλ(A1
µA1

νA1
λ −A2

µA2
νA2

λ) = 2ǫµνλ(A−
µA−

ν A−
λ + 3A−

µA+
ν A+

λ ) . (B.4)
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We can also write

DµX12 = ∂µX1 + i[A+,X12] + i(A−
µ X12 + X12A−

µ )

≡ D+
µ X12 + i(A−

µ X12 + X12A−
µ )

DµX†
12 = ∂µX†

12 + i[A+,X†
12] + i(A−

µ X†
12 + X†

12A−
µ )

≡ D+
µ X†

12 + i(A−
µ X†

12 + X†
12A−

µ )

(B.5)

Next, let us expand around some point in moduli space X12 = R 1N×N such that

X12 = R 1N×N + X̃12.

DµX12D
µX†

12 = D+
µ X̃12D

+µX̃†
12 + A−

µA−µ(R2 + O(X̃2
12))

+i(2RA−
µ + A−

µ X̃12 + X̃12A−
µ )D+µX̃†

12

−i(2RA−
µ + A−

µ X̃†
12 + X̃†

12A−
µ )D+µX̃12

DµX21D
µX†

21 = D+
µ X21D

+µX†
21 + i(A−

µ X21 + X21A−
µ )D+µX†

21

−i(A−
µ X†

21 + X†
21A−

µ )D+µX21

(DµΦ)2 = (D+
µ Φ)2 − 2i[A−

µ ,Φ]D+
µ Φ − ([A−

µ ,Φ])2

(B.6)

The action does not contain any derivative of A−
µ . Then, similarly to [55], we can

eliminate it from the action using its equation of motion, resulting in

S =
1

2

∫

d3x(−D+
µ X̃12D

+µX̃†
12 − D+

µ X21D
+µX†

21 − D+
µ ΦD+µΦ

+
1

4(R2 + O(X̃2
12,X

2
21,Φ

2))
GµGµ + iA−

µA−
ν A−

λ ) + . . . (B.7)

We are indeed integrating out A−
µ . The last term should be understood as a shorthand for

what results from replacing A− by the equation of motion. We have also defined

Gµ = 4kǫµνλD+
ν A+

λ + 2iRD+µX†
12 − 2iRD+µX12 (B.8)

+
∑

i={12,21}

(2iXiD
+µX†

i − 2iX†
i D

µXi + 2iD+µX†
i Xi − 2iD+µXiX

†
i − 2i[,Φ]D+µΦ) .

Starting from the previous equation, we drop the tilde in X̃12. The D+
ν A+

λ squared term

gives the usual YM kinetic term. The commutator term in the last line of (B.8) comes

from [A−
µ ,Φ]D+µΦ in the action, from which we have extracted A−

µ . Componentwise, the

last line involves the structure constants fabc of the Lie algebra. R plays the role of a

perturbation expansion parameter. If the superpotential is quartic (say with terms of the

form X12X21Φ
2) A+

λ , Xi and Φ have canonical dimension 1/2.

Parity acts by, for example, x1 → −x1. We can make (B.8) invariant if Xi → X†
i

and Φ does not change under a parity transformation. Notice that Xi → X†
i is the same

type of transformation used in ABJM to achieve parity invariance [12]. In ABJM, this

operation is accompanied by exchanging the two gauge groups. In our notation, flipping

the gauge groups corresponds to A−
µ → −A−

µ . Since we have integrated out A−
µ , this last

transformation is not visible in our formalism.

Terms involving Φ are irrelevant. So is the (A−)3 term after using the equation of

motion. Thus, the parity violating terms vanish in the IR limit. Note that this can be
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viewed as the IR limit of Yang-Mills type theories, which we know flows to superconformal

fixed points. This is the same limit as considered by [55], where the maximal super Yang-

Mills theory flows to the Bagger-Lambert theory [6]. This suggests that the parity violating

terms vanish in the superconformal theories since these have terms similar to (B.1) with

the additional parity-invariant potential terms (with fermion terms which can be deduced

from the N = 1 superfield formalism). We emphasize that the theories constructed in

the paper are superconformal theories in the same sense that Klebanov-Witten theory [33]

describes the superconformal theories corresponding to D3 branes probing conifold.

We expect this kind of argument can be applied to generic points in moduli space. We

can regard the procedure we have just outlined as going to some kind of unitary gauge. The

method is a bit subtle, since the transformation is singular when (R2+O(X2
i ,Φ2)) vanishes.

Our arguments are based on the chiral fields having dimension 1/2. This issue becomes

more subtle for sextic superpotentials, but we have already seen that models with sextic

superpotential such as C(Q111) can be regarded as models with a quartic superpotential

by adding massive adjoints.

This method can be applied to most of the models in our paper, in which we can

separate gauge groups into pairs with (k,−k) CS levels.18 Let us, for example, consider

the C(Q111) theory. We have

S = −1

2

∫

(DµAiD
µA†

i + DµBiD
µB†

i + DµCiD
µC†

i )

+
k

2

∫

ǫµνλ(A1∂νA1 −A3∂νA3 + A2∂νA2 −A4∂νA4) + · · · (B.9)

and

DµA1 = ∂µA1 + i(A1 −A3)A1

DµC2 = ∂µC2 + i(A4 −A2)C2 . (B.10)

Proceeding as before, we can rewrite the CS term as

ǫµνλ((A1 −A3)µ∂ν(A1 + A3)λ + (A2 −A4)µ∂ν(A2 + A4)λ). (B.11)

Expanding around A1 = R and C2 = r, we can integrate out the (A1 −A3) and (A2 −A4)

combinations. Then, we see parity invariance can be achieved by Ai, Bi, Ci → A†
i , B

†
i , C

†
i

up to irrelevant terms.
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